Design of physical user–robot interactions for model identification of soft actuators on exoskeleton robots

Author:

Hamaya Masashi12ORCID,Matsubara Takamitsu13,Teramae Tatsuya1,Noda Tomoyuki1,Morimoto Jun1

Affiliation:

1. The Department of Brain Robot Interface, ATR-CNS, Kyoto, Japan

2. The Graduate School of Frontier Bioscience, Osaka University, Osaka, Japan

3. The Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan

Abstract

Recent breakthroughs in wearable robots, such as exoskeleton robots with soft actuators and soft exosuits, have enabled the use of safe and comfortable movement assistance. However, modeling and identification methods for soft actuators used in wearable robots have yet to be sufficiently explored. In this study, we propose a novel approach for obtaining accurate soft actuator models through the design of physical user–robot interactions for wearable robots, in which the user applies external forces to the robot. To obtain an accurate soft actuator model from the limited amount of data acquired through an interaction, we leverage an active learning framework based on Gaussian process regression. We conducted experiments using a two-degree-of-freedom upper-limb exoskeleton robot with four pneumatic artificial muscles (PAMs). Experimental results showed that physical interactions between the exoskeleton robot and the user were successfully designed to allow PAM models to be identified. Furthermore, we found that data acquired through an interaction could result in more accurate soft actuator models for the exoskeleton robots than data acquired without a physical interaction between the exoskeleton robot and the user.

Funder

Japan Society for the Promotion of Science

National Institute of Information and Communications Technology

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3