Transition state clustering: Unsupervised surgical trajectory segmentation for robot learning

Author:

Krishnan Sanjay1,Garg Animesh1,Patil Sachin1,Lea Colin2,Hager Gregory2,Abbeel Pieter1,Goldberg Ken1

Affiliation:

1. University of California, Berkeley, USA

2. Johns Hopkins University, USA

Abstract

Demonstration trajectories collected from a supervisor in teleoperation are widely used for robot learning, and temporally segmenting the trajectories into shorter, less-variable segments can improve the efficiency and reliability of learning algorithms. Trajectory segmentation algorithms can be sensitive to noise, spurious motions, and temporal variation. We present a new unsupervised segmentation algorithm, transition state clustering (TSC), which leverages repeated demonstrations of a task by clustering segment endpoints across demonstrations. TSC complements any motion-based segmentation algorithm by identifying candidate transitions, clustering them by kinematic similarity, and then correlating the kinematic clusters with available sensory and temporal features. TSC uses a hierarchical Dirichlet process Gaussian mixture model to avoid selecting the number of segments a priori. We present simulated results to suggest that TSC significantly reduces the number of false-positive segments in dynamical systems observed with noise as compared with seven probabilistic and non-probabilistic segmentation algorithms. We additionally compare algorithms that use piecewise linear segment models, and find that TSC recovers segments of a generated piecewise linear trajectory with greater accuracy in the presence of process and observation noise. At the maximum noise level, TSC recovers the ground truth 49% more accurately than alternatives. Furthermore, TSC runs 100× faster than the next most accurate alternative autoregressive models, which require expensive Markov chain Monte Carlo (MCMC)-based inference. We also evaluated TSC on 67 recordings of surgical needle passing and suturing. We supplemented the kinematic recordings with manually annotated visual features that denote grasp and penetration conditions. On this dataset, TSC finds 83% of needle passing transitions and 73% of the suturing transitions annotated by human experts.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unsupervised Approach for Multimodality Telerobotic Trajectory Segmentation;IEEE Internet of Things Journal;2024-09-15

2. Orbit-Surgical: An Open-Simulation Framework for Learning Surgical Augmented Dexterity;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

3. LOTUS: Continual Imitation Learning for Robot Manipulation Through Unsupervised Skill Discovery;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

4. Enhancing motion trajectory segmentation of rigid bodies using a novel screw-based trajectory-shape representation;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

5. Transition State Clustering for Interaction Segmentation and Learning;Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction;2024-03-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3