Tool Center Trajectory Planning for Industrial Robot Manipulators Using Dynamical Systems

Author:

Ellekilde Lars-Peter1,Perram John W.1

Affiliation:

1. Maersk Mc-Kinney Moller Institute for Production Technology, University of Southern Denmark, DK-5230 Odense M, Denmark,

Abstract

In this paper we generalize previous work in which the fixed points of dynamical systems were used to construct obstacle-avoiding, goal-attracting trajectories for robots to more complex attractors such as limit cycles in the form of closed planar curves. Following the development of a formalism for dealing with a mechanical system, some of whose coordinates are constrained to follow the trajectories of a set of coupled differential equations, we discuss how to construct, analyze, and solve a planar dynamical system whose limit set is one or more user-specified closed curves or limit cycles. This work finds its relevance in a wide range of applications. Our focus has mainly been on planning tool trajectories for industrial robot manipulators with applications such as welding and painting. However, the generalization from fixed points to limit cycles is also applicable when controlling automatic guided vehicles.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3