The minimum constraint removal problem with three robotics applications

Author:

Hauser Kris1

Affiliation:

1. School of Informatics and Computing, Indiana University, USA

Abstract

This paper formulates a new minimum constraint removal (MCR) motion planning problem in which the objective is to remove the fewest geometric constraints necessary to connect a start and goal state with a free path. It describes a probabilistic roadmap motion planner for MCR in continuous configuration spaces that operates by constructing increasingly refined roadmaps, and efficiently solves discrete MCR problems on these networks. A number of new theoretical results are given for discrete MCR, including a proof that it is NP-hard by reduction from SET-COVER. Two search algorithms are described that perform well in practice. The motion planner is proven to produce the optimal MCR with probability approaching 1 as more time is spent, and its convergence rate is improved with various efficient sampling strategies. It is demonstrated on three example applications: generating human-interpretable excuses for failure, motion planning under uncertainty, and rearranging movable obstacles.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Minimal Path Violation Problem with Application to Fault Tolerant Motion Planning of Manipulators;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

2. Computational Tradeoff in Minimum Obstacle Displacement Planning for Robot Navigation;2023 IEEE International Conference on Robotics and Automation (ICRA);2023-05-29

3. A sampling and learning framework to prove motion planning infeasibility;The International Journal of Robotics Research;2023-02-02

4. Sampling-Based Planning for Retrieving Near-Cylindrical Objects in Cluttered Scenes Using Hierarchical Graphs;IEEE Transactions on Robotics;2023-02

5. Minimum Displacement Motion Planning for Movable Obstacles;Intelligent Autonomous Systems 17;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3