MARS-LVIG dataset: A multi-sensor aerial robots SLAM dataset for LiDAR-visual-inertial-GNSS fusion

Author:

Li Haotian1ORCID,Zou Yuying1,Chen Nan1ORCID,Lin Jiarong1,Liu Xiyuan1ORCID,Xu Wei1,Zheng Chunran1,Li Rundong1,He Dongjiao1ORCID,Kong Fanze1,Cai Yixi1ORCID,Liu Zheng1,Zhou Shunbo2,Xue Kaiwen2ORCID,Zhang Fu1

Affiliation:

1. Department of Mechanical Engineering, The University of Hong Kong, Hong Kong

2. Huawei Cloud Computing Technical Innovation Dept., Huawei Cloud Computing Technologies Co., Ltd., Gui'an, China

Abstract

In recent years, advancements in Light Detection and Ranging (LiDAR) technology have made 3D LiDAR sensors more compact, lightweight, and affordable. This progress has spurred interest in integrating LiDAR with sensors such as Inertial Measurement Units (IMUs) and cameras for Simultaneous Localization and Mapping (SLAM) research. Public datasets covering different scenarios, platforms, and viewpoints are crucial for multi-sensor fusion SLAM studies, yet most focus on handheld or vehicle-mounted devices with front or 360-degree views. Data from aerial vehicles with downward-looking views is scarce, existing relevant datasets usually feature low altitudes and are mostly limited to small campus environments. To fill this gap, we introduce the Multi-sensor Aerial Robots SLAM dataset (MARS-LVIG dataset), providing unique aerial downward-looking LiDAR-Visual-Inertial-GNSS data with viewpoints from altitudes between 80 m and 130 m. The dataset not only offers new aspects to test and evaluate existing SLAM algorithms, but also brings new challenges which can facilitate researches and developments of more advanced SLAM algorithms. The MARS-LVIG dataset contains 21 sequences, acquired across diversified large-area environments including an aero-model airfield, an island, a rural town, and a valley. Within these sequences, the UAV has speeds varying from 3 m/s to 12 m/s, a scanning area reaching up to 577,000 m2, and the max path length of 7.148 km in a single flight. This dataset encapsulates data collected by a lightweight, hardware-synchronized sensor package that includes a solid-state 3D LiDAR, a global-shutter RGB camera, IMUs, and a raw message receiver of the Global Navigation Satellite System (GNSS). For algorithm evaluation, this dataset releases ground truth of both localization and mapping, which are acquired by on-board Real-time Kinematic (RTK) and DJI L1 (post-processed by its supporting software DJI Terra), respectively. The dataset can be downloaded from: https://mars.hku.hk/dataset.html .

Funder

the Grants Committee Early Career Scheme of The University of Hong Kong

DJI research donation

Huawei Cloud Computing Technologies Co., Ltd

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3