High-precision motion of magnetic microrobot with ultrasonic levitation for 3-D rotation of single oocyte

Author:

Feng Lin1,Di Pei12,Arai Fumihito12

Affiliation:

1. Department of Micro-Nano Systems Engineering, Graduate School of Engineering, Nagoya University, Japan

2. Institute of Innovation for Future Society, Nagoya University, Japan

Abstract

In this study, we propose an innovative driving method for a microrobot. By using acoustic levitation, the microrobot can be levitated from the glass substrate. We are able to achieve positioning accuracy of less than 1 μm, and the response speed and output force are also significantly improved. Silicon-based microrobots can be made into diverse shapes using deep reactive-ion etching (DRIE). Using custom-designed microrobots allows for the 3-D rotational control of a single bovine oocyte. Orientation with an accuracy of 1° and an average rotation velocity of 3 rad/s are achieved. This study contributes to the biotechnology. In the study of oocytes/embryos, manipulation is used for the enucleation, microinjection, and investigation of the characteristics of oocytes, such as the meiotic spindle and zona pellucida using PolScope. These studies and their clinical applications involve the three-dimensional (3-D) rotation of mammalian oocytes. The overall out-of-plane and in-plane rotations of the oocyte are demonstrated by using an acoustically levitated microrobot. In addition, by using this approach, it becomes much easier to manipulate the cell to investigate the characteristics of the single cell and analyze its mechanical properties.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3