Scaling effects of manufacturing processes and actuation sources on control of remotely powered micro actuators

Author:

Heo Jae-Kyung1ORCID,Kausthubharam 1ORCID,Jung Minyong1,Kim Wonjin1,Jeong Suhwan1,Song Dae-Seob1ORCID,Quan Ying-Jun2,Jeon Ji Ho2,Ribeiro de Moura Rodrigo1,Ahn Sung-Hoon1

Affiliation:

1. Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea

2. Institute of Advanced Machines and Design, Seoul National University, Seoul, Republic of Korea

Abstract

Over the past decade, remotely powered micro actuators have gained increased attention for biomedical and environmental remediation applications, owing to their ability to access confined regions and the nonintrusive nature of control. Recent studies focus on improving the functionality and versatility of micro actuators through the development of new fabrication and actuation techniques. However, there is a possibility that a limited understanding of the scaling impact of various physical principles governing design and control has affected the successful implementation of such devices in practical scenarios. Thus, the main focus of this review is to evaluate the most widely utilized manufacturing methods and remote actuation sources in light of various characteristics such as resolution, productivity, shape complexity, actuation speed, actuation mode, operating medium, and so on. State-of-the-art developments in each type of manufacturing and actuation are introduced and delineated. Finally, the limitations of current devices are reviewed, and the future direction to enable the full potential of this field is provided.

Funder

The National Research Foundation of Korea (NRF) grants funded by the MSIT

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real-Time Remote-Controlled Human Manipulation Medical Robot Using IoT Module;EAI Endorsed Transactions on Internet of Things;2024-06-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3