Real-time recognition of team behaviors by multisensory graph-embedded robot learning

Author:

Reily Brian1ORCID,Gao Peng1,Han Fei1,Wang Hua1,Zhang Hao1

Affiliation:

1. Human-Centered Robotics Lab, Colorado School of Mines, Golden, CO, USA

Abstract

Awareness of team behaviors (e.g., individual activities and team intents) plays a critical role in human–robot teaming. Autonomous robots need to be aware of the overall intent of the team they are collaborating with in order to effectively aid their human peers or augment the team’s capabilities. Team intents encode the goal of the team, which cannot be simply identified from a collection of individual activities. Instead, teammate relationships must also be encoded for team intent recognition. In this article, we introduce a novel representation learning approach to recognizing team intent awareness in real-time, based upon both individual human activities and the relationship between human peers in the team. Our approach formulates the task of robot learning for team intent recognition as a joint regularized optimization problem, which encodes individual activities as latent variables and represents teammate relationships through graph embedding. In addition, we design a new algorithm to efficiently solve the formulated regularized optimization problem, which possesses a theoretical guarantee to converge to the optimal solution. To evaluate our approach’s performance on team intent recognition, we test our approach on a public benchmark group activity dataset and a multisensory underground search and rescue team behavior dataset newly collected from robots in an underground environment, as well as perform a proof-of-concept case study on a physical robot. The experimental results have demonstrated both the superior accuracy of our proposed approach and its suitability for real-time applications on mobile robots.

Funder

NSF CAREER award

DARPA Young Faculty Award

NSF CNS

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey of Multimodal Perception Methods for Human-Robot Interaction in Social Environments;ACM Transactions on Human-Robot Interaction;2024-04-29

2. My synthetic wingman must understand me: modelling intent for future manned–unmanned teaming;Cognition, Technology & Work;2023-11-29

3. Distributed 3D Interior Design System Based on Intelligent VR Technology;Proceedings of the 4th International Conference on Big Data Analytics for Cyber-Physical System in Smart City - Volume 1;2023

4. Energy Saving Planner Model via Differential Evolutionary Algorithm for Bionic Palletizing Robot;Sensors;2022-10-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3