Author:
Deng Yi,Zhou Tao,Zhao Guojin,Zhu Kuihu,Xu Zhaixin,Liu Hai
Abstract
Energy saving in palletizing robot is a fundamental problem in the field of industrial robots. However, the palletizing robot often suffers from the problems of high energy consumption and lacking flexibility. In this work, we introduce a novel differential evolution algorithm to address the adverse effects caused by the instability of the initial trajectory parameters while reducing the energy. Specially, a simplified analytical model of the palletizing robot is firstly developed. Then, the simplified analytical model and the differential evolutionary algorithm are combined to form a planner with the goal of reducing energy consumption. The energy saving planner optimizes the initial parameters of the trajectories collected by the bionic demonstration system, which in turn enables a reduction in the operating power consumption of the palletizing robot. The major novelty of this article is the use of a differential evolutionary algorithm that can save the energy consumption as well as boosting its flexibility. Comparing with the traditional algorithms, the proposed method can achieve the state-of-the-art performance. Simulated and actual experimental results illustrate that the optimized trajectory parameters can effectively reduce the energy consumption of palletizing robot by 16%.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献