DUEL: Depth visUal Ego-motion Learning for autonomous robot obstacle avoidance

Author:

Wang Naiyao1ORCID,Zhang Bo1ORCID,Chi Haixu1ORCID,Wang Hua2ORCID,McLoone Seán3ORCID,Liu Hongbo1ORCID

Affiliation:

1. College of Artificial Intelligence, Dalian Maritime University, Dalian, China

2. Department of Mathematical Sciences, Georgia Southern University, Statesboro, GA, USA

3. School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, Belfast, UK

Abstract

Reliable obstacle avoidance, which is essential for safe autonomous robot interaction with the real world, raises various challenges such as difficulties with obstacle perception and latent factor cognition impacting multi-modal obstacle avoidance. In this paper, we propose a Depth visUal Ego-motion Learning (DUEL) model, consisting of a cognitive generation network, a policy decision network and a potential partition network, to learn autonomous obstacle avoidance from expert policies. The DUEL model takes advantage of binocular vision to perceive scene depth. This serves as the input to the cognitive generation network which generates obstacle avoidance policies by maximizing its causal entropy. The policy decision network then optimizes the generation of the policies referring to expert policies. The generated obstacle avoidance policies are simultaneously transferred to the potential partition network to capture the latent factors contained within expert policies and perform multi-modal obstacle avoidance. These three core networks iteratively optimize the multi-modal policies relying on causal entropy and mutual information theorems, which are proven theoretically. Experimental comparisons with state-of-the-art models on 7 metrics demonstrate the effectiveness of the DUEL model. It achieves the best performance with an average ADE (Average Displacement Error) of 0.29 and average FDE (Final Displacement Error) of 0.55 across five different scenarios. Results show that the DUEL model can maintain an average obstacle avoidance success rate of 97% for both simulated and real world scenarios with multiple obstacles, demonstrating its success at capturing latent factors from expert policies. Our source codes are available at https://github.com/ACoTAI/DUEL .

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Liaoning Collaborative Fund

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An obstacle avoidance method for robotic arm based on reinforcement learning;Industrial Robot: the international journal of robotics research and application;2024-07-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3