Generalized reciprocal collision avoidance

Author:

Bareiss Daman1,van den Berg Jur2

Affiliation:

1. Department of Mechanical Engineering, University of Utah, UT, USA

2. School of Computing, University of Utah, UT, USA

Abstract

Reciprocal collision avoidance has become a popular area of research over recent years. Approaches have been developed for a variety of dynamic systems ranging from single integrators to car-like, differential-drive, and arbitrary, linear equations of motion. In this paper, we present two contributions. First, we provide a unification of these previous approaches under a single, generalized representation using control obstacles. In particular, we show how velocity obstacles, acceleration velocity obstacles, continuous control obstacles, and LQR-obstacles are special instances of our generalized framework. Secondly, we present an extension of control obstacles to general reciprocal collision avoidance for non-linear, non-homogeneous systems where the robots may have different state spaces and different non-linear equations of motion from one another. Previous approaches to reciprocal collision avoidance could not be applied to such systems, as they use a relative formulation of the equations of motion and can, therefore, only apply to homogeneous, linear systems where all robots have the same linear equations of motion. Our approach allows for general mobile robots to independently select new control inputs while avoiding collisions with each other. We implemented our approach in simulation for a variety of mobile robots with non-linear equations of motion: differential-drive, differential-drive with a trailer, car-like, and hovercrafts. We also performed physical experiments with a combination of differential-drive, differential-drive with a trailer, and car-like robots. Our results show that our approach is capable of letting a non-homogeneous group of robots with non-linear equations of motion safely avoid collisions at real-time computation rates.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3