A modular, multi-arm concentric tube robot system with application to transnasal surgery for orbital tumors

Author:

Bruns Trevor L.1ORCID,Remirez Andria A.1ORCID,Emerson Maxwell A.1,Lathrop Ray A.1,Mahoney Arthur W.1,Gilbert Hunter B.2ORCID,Liu Cindy L.1,Russell Paul T.3,Labadie Robert F.3,Weaver Kyle D.4,Webster Robert J.1

Affiliation:

1. Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA

2. Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA

3. Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA

4. Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA

Abstract

In the development of telemanipulated surgical robots, a class of continuum robots known as concentric tube robots has drawn particular interest for clinical applications in which space is a major limitation. One such application is transnasal surgery, which is used to access surgical sites in the sinuses and at the skull base. Current techniques for performing these procedures require surgeons to maneuver multiple rigid tools through the narrow confines of the nasal passages, leaving them with limited dexterity at the surgical site. In this article, we present a complete robotic system for transnasal surgery featuring concentric tube manipulators. It illustrates a bagging concept for sterility, and intraoperatively interchangeable instruments that work in conjunction with it, which were developed with operating room workflow compatibility in mind. The system also includes a new modular, portable surgeon console, a variable view-angle endoscope to facilitate surgical field visualization, and custom motor control electronics. Furthermore, we demonstrate elastic instability avoidance for the first time on a physical prototype in a geometrically accurate surgical scenario, which facilitates use of higher curvature tubes than could otherwise be used safely in this application. From a surgical application perspective, this article presents the first robotic approach to removing tumors growing behind the eyes in the orbital apex region, which has not been attempted previously with a surgical robot.

Funder

National Institutes of Health

National Science Foundation

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3