Affiliation:
1. University of Notre Dame, Notre Dame, IN, USA
Abstract
In this article, we develop and assess a novel approach for the control of underactuated planar bipeds that is based on velocity decomposition. The new controller employs heuristic rules that mimic the functionality of transverse linearization feedback control and that can be layered on top of a conventional hybrid zero dynamics (HZD)-based controller. The heuristics sought to retain HZD-based control’s simplicity and enhance disturbance rejection for practical implementation on realistic biped robots. The proposed control strategy implements a feedback on the time rate of change of the decomposed uncontrolled velocity and is compared with conventional HZD-based control and transverse linearization feedback control for both vanishing and non-vanishing disturbances. Simulation studies with a point-foot, three-link biped show that the proposed method has nearly identical performance to transverse linearization feedback control and outperforms conventional HZD-based control. For the non-vanishing case, the velocity decomposition-enhanced controller outperforms HZD-based control, but takes fewer steps on average before failure than transverse linearization feedback control when walking on uneven terrain without visual perception of the ground. The findings were validated experimentally on a planar, five-link biped robot for eight different uneven terrains. The velocity decomposition-enhanced controller outperformed HZD-based control while maintaining a relatively low specific energetic cost of transport (~0.45). The biped robot “blindly” traversed uneven terrains with changes in terrain height accumulating to 5% of its leg length using the stand-alone low-level controller.
Funder
Division of Information and Intelligent Systems
Subject
Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献