Navigation Strategies for Exploring Indoor Environments

Author:

González-Baños Héctor H.1,Latombe Jean-Claude2

Affiliation:

1. Honda R&D, Americas 800 California St. Suite 300 Mountain View, CA 94041, USA

2. Department of Computer Science Stanford University Stanford, CA 94305, USA

Abstract

In this paper, we investigate safe and efficient map-building strategies for a mobile robot with imperfect control and sensing. In the implementation, a robot equipped with a range sensor builds apolygonal map (layout) of a previously unknown indoor environment. The robot explores the environment and builds the map concurrently by patching together the local models acquired by the sensor into a global map. A well-studied and related problem is the simultaneous localization and mapping (SLAM) problem, where the goal is to integrate the information collected during navigation into the most accurate map possible. However, SLAM does not address the sensor-placement portion of the map-building task. That is, given the map built so far, where should the robot go next? This is the main question addressed in this paper. Concretely, an algorithm is proposed to guide the robot through a series of “good” positions, where “good” refers to the expected amount and quality of the information that will be revealed at each new location. This is similar to the next-best-view (NBV) problem studied in computer vision and graphics. However, in mobile robotics the problem is complicated by several issues, two of which are particularly crucial. One is to achieve safe navigation despite an incomplete knowledge of the environment and sensor limitations (e.g., in range and incidence). The other issue is the need to ensure sufficient overlap between each new local model and the current map, in order to allow registration of successive views under positioning uncertainties inherent to mobile robots. To address both issues in a coherent framework, in this paper we introduce the concept of a safe region, defined as the largest region that is guaranteed to be free of obstacles given the sensor readings made so far. The construction of a safe region takes sensor limitations into account. In this paper we also describe an NBV algorithm that uses the safe-region concept to select the next robot position at each step. The new position is chosen within the safe region in order to maximize the expected gain of information under the constraint that the local model at this new position must have a minimal overlap with the current global map. In the future, NBV and SLAM algorithms should reinforce each other. While a SLAM algorithm builds a map by making the best use of the available sensory data, an NBV algorithm, such as that proposed here, guides the navigation of the robot through positions selected to provide the best sensory inputs.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 252 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3