Versatile articulated aerial robot DRAGON: Aerial manipulation and grasping by vectorable thrust control

Author:

Zhao Moju1ORCID,Okada Kei2,Inaba Masayuki2

Affiliation:

1. Department of Mechanical Engineering, The Graduate School of Engineering, The University of Tokyo, Tokyo, Japan

2. Department of Mechano-Infomatics, The Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan

Abstract

Various state-of-the-art works have achieved aerial manipulation and grasping by attaching additional manipulator to aerial robots. However, such a coupled platform has limitations with respect to the interaction force and mobility. In this paper, we present the successful implementation of aerial manipulation and grasping by a novel articulated aerial robot called DRAGON, in which a vectorable rotor unit is embedded in each link. The key to performing stable manipulation and grasping in the air is the usage of rotor vectoring apparatus having two degrees-of-freedom. First, a comprehensive flight control methodology for aerial transformation using the vectorable thrust force is developed with the consideration of the dynamics of vectoring actuators. This proposed control method can suppress the oscillation due to the dynamics of vectoring actuators and also allow the integration with external and internal wrenches for object manipulation and grasping. Second, an online thrust-level planning method for bimanual object grasping using the two ends of this articulated model is presented. The proposed grasping style is unique in that the vectorable thrust force is used as the internal wrench instead of the joint torque. Finally, we show the experimental results of evaluation on the proposed control and planning methods for object manipulation and grasping.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive configuration control of combined UAVs based on leader-wingman mode;Chinese Journal of Aeronautics;2024-07

2. Cooperative Drone Delivery via Push-based Lift with Payload Stabilization;Proceedings of the 10th Workshop on Micro Aerial Vehicle Networks, Systems, and Applications;2024-06-03

3. Constrained trajectory optimization and force control for UAVs with universal jamming grippers;Scientific Reports;2024-05-25

4. Floating-base manipulation on zero-perturbation manifolds;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

5. Bistable Aerial Transformer: A Quadrotor Fixed-Wing Hybrid That Morphs Dynamically Via Passive Soft Mechanism;Journal of Mechanisms and Robotics;2024-04-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3