Importance sampling for online planning under uncertainty

Author:

Luo Yuanfu1ORCID,Bai Haoyu2,Hsu David1,Lee Wee Sun1

Affiliation:

1. Department of Computer Science, National University of Singapore, Singapore

2. Movel AI Pte Ltd, Singapore

Abstract

The partially observable Markov decision process (POMDP) provides a principled general framework for robot planning under uncertainty. Leveraging the idea of Monte Carlo sampling, recent POMDP planning algorithms have scaled up to various challenging robotic tasks, including, real-time online planning for autonomous vehicles. To further improve online planning performance, this paper presents IS-DESPOT, which introduces importance sampling to DESPOT, a state-of-the-art sampling-based POMDP algorithm for planning under uncertainty. Importance sampling improves DESPOT’s performance when there are critical, but rare events, which are difficult to sample. We prove that IS-DESPOT retains the theoretical guarantee of DESPOT. We demonstrate empirically that importance sampling significantly improves the performance of online POMDP planning for suitable tasks. We also present a general method for learning the importance sampling distribution.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Domain independent heuristics for online stochastic contingent planning;Annals of Mathematics and Artificial Intelligence;2024-07-08

2. Stochastic economic dispatch of wind power under uncertainty using clustering-based extreme scenarios;Electric Power Systems Research;2024-04

3. Partition Sampling Strategy for Robot Motion Planning in Narrow Passage Under Uncertainty;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

4. A Fast Online Planning Under Partial Observability Using Information Entropy Rewards;IEEE Transactions on Industrial Informatics;2023-12

5. Rollout Heuristics for Online Stochastic Contingent Planning;Electronic Proceedings in Theoretical Computer Science;2023-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3