Market-based Multirobot Coordination for Complex Tasks

Author:

Zlot Robert1,Stentz Anthony1

Affiliation:

1. The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA,

Abstract

Current technological developments and application-driven demands are bringing us closer to the realization of autonomous multi-robot systems performing increasingly complex missions. However, existing methods of distributing mission subcomponents among multirobot teams do not explicitly handle the required complexity and instead treat tasks as simple indivisible entities, ignoring any inherent structure and semantics that such complex tasks might have. These task properties can be exploited to produce more efficient team plans by giving individual robots the ability to come up with new, more localized ways to perform a task; by allowing multiple robots to cooperate by sharing the subcomponents of a task; or both. In this paper, we describe the complex task allocation problem and present a distributed solution for efficiently allocating a set of complex tasks among a robot team. Complex tasks are tasks that can be solved in many possible ways. In contrast, simple tasks can be accomplished in a straightforward, prescriptive manner. The current scope of our work is currently limited to complex tasks that can be decomposed into multiple subtasks related by Boolean logic operators. Our solution to multirobot coordination for complex tasks extends market-based approaches by generalizing task descriptions into task trees, which allows tasks to be traded in a market setting at variable levels of abstraction. In order to incorporate these task structures into a market mechanism, novel and efficient bidding and auction clearing algorithms are required. As an example scenario, we focus on an area reconnaissance problem which requires sensor coverage by a team of robots over a set of defined areas of interest. The advantages of explicitly modeling complex tasks during the allocation process is demonstrated by a comparison of our approach with existing task allocation algorithms in this application domain. In simulation we compare the quality of solution and the computation times of these different approaches. Implementations on two separate teams of indoor and outdoor robots further validates our approach.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 125 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3