Representation, learning, and planning algorithms for geometric task and motion planning

Author:

Kim Beomjoon1ORCID,Shimanuki Luke2ORCID,Kaelbling Leslie Pack3ORCID,Lozano-Pérez Tomás3ORCID

Affiliation:

1. Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea

2. Optimus Ride, USA

3. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract

We present a framework for learning to guide geometric task-and-motion planning (G-TAMP). G-TAMP is a subclass of task-and-motion planning in which the goal is to move multiple objects to target regions among movable obstacles. A standard graph search algorithm is not directly applicable, because G-TAMP problems involve hybrid search spaces and expensive action feasibility checks. To handle this, we introduce a novel planner that extends basic heuristic search with random sampling and a heuristic function that prioritizes feasibility checking on promising state–action pairs. The main drawback of such pure planners is that they lack the ability to learn from planning experience to improve their efficiency. We propose two learning algorithms to address this. The first is an algorithm for learning a rank function that guides the discrete task-level search, and the second is an algorithm for learning a sampler that guides the continuous motion-level search. We propose design principles for designing data-efficient algorithms for learning from planning experience and representations for effective generalization. We evaluate our framework in challenging G-TAMP problems, and show that we can improve both planning and data efficiency.

Funder

air force office of scientific research

Artificial Intelligence Graduate School Program

SUTD Temasek Laboratories

office of naval research

Honda Research Institute

MIT-IBM Watson Lab

national science foundation

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3