Estimating First-Order Geometric Parameters and Monitoring Contact Transitions during Force-Controlled Compliant Motion

Author:

de Schutter Joris,Bruyninckx Herman1,Dutré Stefan2,de Geeter Jan3,Katupitiya Jayantha4,Demey Sabine5,Lefebvre Tine1

Affiliation:

1. Katholieke Universiteit Leuven, Department of Mechanical Engineering, Leuven, Belgium

2. Katholieke Universiteit Leuven, Department of Mechanical Engineering, Leuven, Belgium; LMS International, Leuven, Belgium

3. SCK-CEN Belgian Research Centre for Nuclear Energy, Mol, Belgium

4. School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, Australia

5. Katholieke Universiteit Leuven, Department of Mechanical Engineering, Leuven, Belgium; Materialise N.V., Leuven, Belgium

Abstract

This paper uses (linearized) Kalman filters to estimate first-order geometric parameters (i.e., orientation of contact normals and location of contact points) that occur in force-controlled compliant motions. The time variance of these parameters is also estimated. In addition, transitions between contact situations can be monitored. The contact between the manipulated object and its environment is general, i.e., multiple contacts can occur at the same time, and both the topology and the geometry of each single contact are arbitrary. The two major theoretical contributions are 1) the integration of the general contact model, developed previously by the authors, into a state-space form suitable for recursive processing; and 2) the use of the reciprocity constraint between ideal contact forces and motion freedoms as the “measurement equation” of the Kalman filter. The theory is illustrated by full 3-D experiments. The approach of this paper allows a breakthrough in the state of the art dominated by the classical, orthogonal contact models of Mason that can only cope with a limited (albeit important) subset of all possible contact situations.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3