Unifying geometric, probabilistic, and potential field approaches to multi-robot deployment

Author:

Schwager Mac1,Rus Daniela2,Slotine Jean-Jacques3

Affiliation:

1. GRASP Laboratory, University of Pennsylvania, 3330 Walnut St, Philadelphia, PA 19106, USA,

2. Computer Science and Artificial Intelligence Laboratory, MIT, 32 Vassar Street, Cambridge, MA 02139, USA

3. Nonlinear Systems Laboratory, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

Abstract

This paper unifies and extends several different existing strategies for deploying groups of robots in an environment. A cost function is proposed that can be specialized to represent widely different multi-robot deployment tasks. It is shown that geometric and probabilistic deployment strategies that were previously seen as distinct are in fact related through this cost function, and differ only in the value of a single parameter. These strategies are also related to potential field-based controllers through the same cost function, though the relationship is not as simple. Distributed controllers are then obtained from the gradient of the cost function and are proved to converge to a local minimum of the cost function. Three special cases are derived as examples: a Voronoi-based coverage control task, a probabilistic minimum variance task, and a task using artificial potential fields. The performance of the three different controllers are compared in simulation. A result is also proved linking multi-robot deployment to non-convex optimization problems, and multi-robot consensus (i.e. all robots moving to the same point) to convex optimization problems, which implies that multi-robot deployment is inherently more difficult than multi-robot consensus.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3