On the role and opportunities in teamwork design for advanced multi-robot search systems

Author:

Francos Roee M.,Bruckstein Alfred M.

Abstract

Intelligent robotic systems are becoming ever more present in our lives across a multitude of domains such as industry, transportation, agriculture, security, healthcare and even education. Such systems enable humans to focus on the interesting and sophisticated tasks while robots accomplish tasks that are either too tedious, routine or potentially dangerous for humans to do. Recent advances in perception technologies and accompanying hardware, mainly attributed to rapid advancements in the deep-learning ecosystem, enable the deployment of robotic systems equipped with onboard sensors as well as the computational power to perform autonomous reasoning and decision making online. While there has been significant progress in expanding the capabilities of single and multi-robot systems during the last decades across a multitude of domains and applications, there are still many promising areas for research that can advance the state of cooperative searching systems that employ multiple robots. In this article, several prospective avenues of research in teamwork cooperation with considerable potential for advancement of multi-robot search systems will be visited and discussed. In previous works we have shown that multi-agent search tasks can greatly benefit from intelligent cooperation between team members and can achieve performance close to the theoretical optimum. The techniques applied can be used in a variety of domains including planning against adversarial opponents, control of forest fires and coordinating search-and-rescue missions. The state-of-the-art on methods of multi-robot search across several selected domains of application is explained, highlighting the pros and cons of each method, providing an up-to-date view on the current state of the domains and their future challenges.

Funder

Technion-Israel Institute of Technology

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference116 articles.

1. A dynamic weighted area assignment based on a particle filter for active cooperative perception;Acevedo;IEEE Robotics Automation Lett.,2020

2. Multi-robot adversarial patrolling: Facing a full-knowledge opponent;Agmon;J. Artif. Intell. Res.,2011

3. Multi-robot perimeter patrol in adversarial settings;Agmon,2008

4. Perception-driven multi-robot formation control;Ahmad,2013

5. Multitarget localization on road networks with hidden markov rao–blackwellized particle filters;Ahmed;J. Aerosp. Inf. Syst.,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lessons learned: Symbiotic autonomous robot ecosystem for nuclear environments;IET Cyber-Systems and Robotics;2023-12

2. Multi-Robot Path Planning based on Ant Colony Algorithm;2023 Global Conference on Information Technologies and Communications (GCITC);2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3