Robust feedback motion planning via contraction theory

Author:

Singh Sumeet1ORCID,Landry Benoit1,Majumdar Anirudha2ORCID,Slotine Jean-Jacques3,Pavone Marco1

Affiliation:

1. Department of Aeronautics and Astronautics, Stanford University, Stanford, CA, USA

2. Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, USA

3. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, UK

Abstract

We present a framework for online generation of robust motion plans for robotic systems with nonlinear dynamics subject to bounded disturbances, control constraints, and online state constraints such as obstacles. In an offline phase, one computes the structure of a feedback controller that can be efficiently implemented online to track any feasible nominal trajectory. The offline phase leverages contraction theory, specifically, Control Contraction Metrics, and convex optimization to characterize a fixed-size “tube” that the state is guaranteed to remain within while tracking a nominal trajectory (representing the center of the tube). In the online phase, when the robot is faced with obstacles, a motion planner uses such a tube as a robustness margin for collision checking, yielding nominal trajectories that can be safely executed, that is, tracked without collisions under disturbances. In contrast to recent work on robust online planning using funnel libraries, our approach is not restricted to a fixed library of maneuvers computed offline and is thus particularly well-suited to applications such as UAV flight in densely cluttered environments where complex maneuvers may be required to reach a goal. We demonstrate our approach through numerical simulations of planar and 3D quadrotors, and hardware results on a quadrotor platform navigating a complex obstacle environment while subject to aerodynamic disturbances. The results demonstrate the ability of our approach to jointly balance motion safety and efficiency for agile robotic systems.

Funder

Office of Naval Research

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3