Mechanically Implementable Accommodation Matrices for Passive Force Control

Author:

Goswami Ambarish1,Peshkin Michael2

Affiliation:

1. Center for Human Modeling and Simulation, Department of Computer and Information Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

2. Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, USA

Abstract

Robot force control implemented by means of passive mechanical devices has inherent advantages over active implementations with regard to stability, response rapidity, and physical robustness. The class of devices considered in this paper consists of a Stewart platform-type mechanism interconnected with a network of adjustable mechanical elements such as springs and dampers. The control law repertoire of such a device, imagined as a robot wrist, is given by the range of admittance matrices that it may be programmed to possess. This paper focuses on wrists incorporating damper networks for which the admittance matrices reduce to accommodation or inverse-damping matrices. We show that a hydraulic network of fully adjustable damper elements may attain any diagonally dominant accommodation matrix. We describe the technique of selecting the individual damping coefficients to design a desired matrix. We identify the set of dominant matrices as a polyhedral convex cone in the space of matrix entries, and show that each dominant matrix can be composed of a positive linear combination of a fixed set of basis matrices. The overall wrist-accommodation matrix is obtained by projecting the accommodation matrix of the damper network through the wrist kinematics. The linear combination of the dominant basis matrices projected through the wrist kinematics generates the entire space of mechanically implementable force-control laws. We quantify the versatility of mechanically implementable force-control laws by comparing this space to the space of all matrices.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Motion-Assist Arm with a Passive Joint for an Upper Limb;Journal of Robotics and Mechatronics;2020-02-20

2. パッシブロボティクス総論;Journal of the Society of Biomechanisms;2017

3. Dissipatively actuated manipulation;Control Engineering Practice;2015-01

4. 10.3951/sobim.39.143;Journal of the Society of Biomechanisms;2015

5. Assistance for positioning of human by using the passive joint of robot arm;Transactions of the JSME (in Japanese);2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3