LQG-MP: Optimized path planning for robots with motion uncertainty and imperfect state information

Author:

van den Berg Jur1,Abbeel Pieter2,Goldberg Ken2

Affiliation:

1. University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,

2. University of California, Berkeley, CA, USA

Abstract

In this paper we present LQG-MP (linear-quadratic Gaussian motion planning), a new approach to robot motion planning that takes into account the sensors and the controller that will be used during the execution of the robot’s path. LQG-MP is based on the linear-quadratic controller with Gaussian models of uncertainty, and explicitly characterizes in advance (i.e. before execution) the a priori probability distributions of the state of the robot along its path. These distributions can be used to assess the quality of the path, for instance by computing the probability of avoiding collisions. Many methods can be used to generate the required ensemble of candidate paths from which the best path is selected; in this paper we report results using rapidly exploring random trees (RRT). We study the performance of LQG-MP with simulation experiments in three scenarios: (A) a kinodynamic car-like robot, (B) multi-robot planning with differential-drive robots, and (C) a 6-DOF serial manipulator. We also present a method that applies Kalman smoothing to make paths Ck-continuous and apply LQG-MP to precomputed roadmaps using a variant of Dijkstra’s algorithm to efficiently find high-quality paths.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 196 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3