Multiple impacts: A state transition diagram approach

Author:

Jia Yan-Bin1,Mason Matthew T2,Erdmann Michael A2

Affiliation:

1. Department of Computer Science, Iowa State University, Ames, IA, USA

2. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA

Abstract

Impact happens when two or more bodies collide, generating very large impulsive forces in a very short period of time during which kinetic energy is first absorbed and then released after some loss. This paper introduces a state transition diagram to model a frictionless multibody collision. Each state describes a different topology of the collision characterized by the set of instantaneously active contacts. A change of state happens when a contact disappears at the end of restitution, or when a disappeared contact reappears as the relative motion of two bodies goes from separation into penetration. Within a state, (normal) impulses are coupled differentially subject to relative stiffnesses at the active contact points and the strain energies stored there. Such coupling may cause restart of compression from restitution during a single impact. Impulses grow along a bounded curve with first-order continuity, and converge during the state transitions. To solve a multibody collision problem with friction and tangential compliance, the above impact model is integrated with a compliant impact model. The paper compares model predictions to a physical experiment for the massé shot, which is a difficult trick in billiards, with a good result.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel variable restitution coefficient model for sphere–substrate elastoplastic contact/impact process;Mechanism and Machine Theory;2024-11

2. A Unified Trajectory Generation Algorithm for Dynamic Dexterous Manipulation;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

3. The Impact Modeling and Experimental Verification of a Launch Vehicle with Crushing-Type Landing Gear;Actuators;2023-07-26

4. Differential Dynamic Programming based Hybrid Manipulation Strategy for Dynamic Grasping;2023 IEEE International Conference on Robotics and Automation (ICRA);2023-05-29

5. Malicious traffic analysis using Markov chain;Proceedings of the International Conference on Engineering and Information Technology for Sustainable Industry;2022-09-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3