Control in belief space with temporal logic specifications using vision-based localization

Author:

Leahy Kevin1ORCID,Cristofalo Eric2ORCID,Vasile Cristian-Ioan3ORCID,Jones Austin1,Montijano Eduardo4,Schwager Mac2,Belta Calin5

Affiliation:

1. MIT Lincoln Laboratory, USA

2. Stanford University, USA

3. Massachusetts Institute of Technology, USA

4. Universidad de Zaragoza, Spain

5. Boston University, USA

Abstract

We present a solution for operating a vehicle without global positioning infrastructure while satisfying constraints on its temporal behavior, and on the uncertainty of its position estimate. The proposed solution is an end-to-end framework for mapping an unknown environment using aerial vehicles, synthesizing a control policy for a ground vehicle in that environment, and using a quadrotor to localize the ground vehicle within the map while it executes its control policy. This vision-based localization is noisy, necessitating planning in the belief space of the ground robot. The ground robot’s mission is given using a language called Gaussian Distribution Temporal Logic (GDTL), an extension of Boolean logic that incorporates temporal evolution and noise mitigation directly into the task specifications. We use a sampling-based algorithm to generate a transition system in the belief space and use local feedback controllers to break the curse of history associated with belief space planning. To localize the vehicle, we build a high-resolution map of the environment by flying a team of aerial vehicles in formation with sensor information provided by their onboard cameras. The control policy for the ground robot is synthesized under temporal and uncertainty constraints given the semantically labeled map. Then the ground robot can execute the control policy given pose estimates from a dedicated aerial robot that tracks and localizes the ground robot. The proposed method is validated using two quadrotors to build a map, followed by a two-wheeled ground robot and a quadrotor with a camera for ten successful experimental trials.

Funder

Office of Naval Research

National Science Foundation

Ministerio de Economía y Competitividad

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3