Estimation, planning, and mapping for autonomous flight using an RGB-D camera in GPS-denied environments

Author:

Bachrach Abraham1,Prentice Samuel1,He Ruijie1,Henry Peter2,Huang Albert S1,Krainin Michael2,Maturana Daniel3,Fox Dieter2,Roy Nicholas1

Affiliation:

1. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, USA

2. Department of Computer Science and Engineering, University of Washington, USA

3. The Robotics Institute, Carnegie Mellon University, USA

Abstract

RGB-D cameras provide both color images and per-pixel depth estimates. The richness of this data and the recent development of low-cost sensors have combined to present an attractive opportunity for mobile robotics research. In this paper, we describe a system for visual odometry and mapping using an RGB-D camera, and its application to autonomous flight. By leveraging results from recent state-of-the-art algorithms and hardware, our system enables 3D flight in cluttered environments using only onboard sensor data. All computation and sensing required for local position control are performed onboard the vehicle, reducing the dependence on an unreliable wireless link to a ground station. However, even with accurate 3D sensing and position estimation, some parts of the environment have more perceptual structure than others, leading to state estimates that vary in accuracy across the environment. If the vehicle plans a path without regard to how well it can localize itself along that path, it runs the risk of becoming lost or worse. We show how the belief roadmap algorithm prentice2009belief, a belief space extension of the probabilistic roadmap algorithm, can be used to plan vehicle trajectories that incorporate the sensing model of the RGB-D camera. We evaluate the effectiveness of our system for controlling a quadrotor micro air vehicle, demonstrate its use for constructing detailed 3D maps of an indoor environment, and discuss its limitations.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3