Dynamic contact force/torque observer: Sensor fusion for improved interaction control

Author:

Bätz Georg1,Weber Bernhard1,Scheint Michael2,Wollherr Dirk12,Buss Martin1

Affiliation:

1. Institute of Automatic Control Engineering, Technische Universität München, Munich, Germany

2. Institute of Advanced Study, Technische Universität München, Munich, Germany

Abstract

The potential areas of application for robots have gradually extended beyond the classical industrial settings in large-scale enterprizes: nowadays, the integration of robots into daily life has become a central development in robotics. Here, one major challenge is the physical interaction with unknown and/or changing environments. Such an interaction requires knowledge of the exchanged contact forces and torques. To this end, robotic systems are typically equipped with force/torque sensors at the wrist. By using force control schemes that rely on measurements from these sensors, conventional manipulation tasks are successfully executed. In particular, for dynamic manipulation tasks, however, the problem arises that the inertial forces/torques of the end effector have a non-negligible effect on the measurements of the wrist sensor. This degrades the performance of the interaction control and constitutes a safety risk since the actual interaction forces/torques deviate from the desired values. As a solution to this problem, the paper discusses four contact force/torque observer designs: two approaches are based on the extended Kalman filter (EKF) and two approaches are based on the unscented Kalman filter (UKF). For both types, EKF and UKF, two different measurement vectors are considered: the first one only uses pose and force/torque measurements, whereas the second one also uses acceleration measurements to determine the contact forces and torques. The four observer designs are evaluated in simulation and experiment for six-degree-of-freedom (DOF) tasks.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robotic abrasive belt grinding of complex curved blades based on a novel force control architecture integrating smooth trajectories;Journal of Manufacturing Processes;2023-12

2. A globally exponentially stable observer for torque estimation with only position measurement;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering;2023-09-19

3. Multi-directional Interaction Force Control with an Aerial Manipulator Under External Disturbances;Autonomous Robots;2023-09-01

4. An efficient and accurate force/torque sensing method based on an excitation trajectory;Industrial Robot: the international journal of robotics research and application;2023-02-17

5. Object Inserting Operation with Admittance Control of A 4-DOF Hydraulic Manipulator with Rotary Vane Actuators;2022 19th International Conference on Ubiquitous Robots (UR);2022-07-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3