Affiliation:
1. Chair of Robotics and Systems Intelligence and Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich (TUM), Munich, Germany
Abstract
In this work we introduce a new type of human-inspired upper-limb prostheses. The Artificial Neuromuscular Prosthesis (ANP) imitates the human neuromuscular system in the sense of its compliance, backdrivability, natural motion, proprioceptive sensing, and kinesthetics. To realize this challenging goal, we introduce a novel human-inspired and simulation-based development paradigm to design the prosthesis mechatronics in correspondence to the human body. The ANP provides body awareness, contact awareness, and human-like contact response, realized via floating base rigid-body models, disturbance observers, and joint impedance control—concepts known from established state-of-the-art robotics. The ANP mechatronics is characterized by a four degrees of freedom (dof) torque-controlled human-like kinematics, a tendon-driven 2-dof wrist, and spatial orientation sensing at a weight of 1.7 kg (without hand and battery). The paper deals with the rigorous mathematical modeling, control, design and evaluation of this device type along initially defined requirements within a single prototype only. The proposed systemic and grasping capabilities are verified under laboratory conditions by an unimpaired user. Future work will increase the technology readiness level of the next generation device, where human studies with impaired users will be done.
Funder
Horizon 2020 Framework Programme
AI.D
Alfried Krupp von Bohlen und Halbach-Stiftung
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献