Time-Optimal Trajectories for Mobile Robots With Two Independently Driven Wheels

Author:

Reister David B.1,Pin François G.1

Affiliation:

1. Center for Engineering Systems Advanced Research Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-6364

Abstract

This article addresses the problem of time-optimal motions for a mobile platform in a planar environment. The platform has two nonsteerable, independently driven wheels. The overall mission of the robot is expressed in terms of a sequence of via points at which the platform must be at rest in a given configuration (position and orientation). The objective is to plan time-optimal trajectories between these configurations, assuming an unobstructed environment. Using Pontryagin's maximum principle (PMP), we formally demonstrate that all time-optimal motions of the platform for this problem occur for bang-bang controls on the wheels (at each instant, the acceleration on each wheel is at either its upper or its lower limit). The PMP, however, provides only the conditions necessary for time optimality. To find the time- optimal robot trajectories, we first parameterize the bang-bang trajectories using the switch times on the wheels (the times at which the wheel accelerations change sign). With this param eterization, we can fully search the robot trajectory space and find the switch times that will produce particular paths to a desired final configuration of the platform. We show numer ically that robot trajectories with three switch times (two on one wheel and one on the other) can reach any position, while trajectories with four switch times can reach any configuration. By numerical comparison with other trajectories involving sim ilar or greater numbers of switch times, we then identify the sets of time-optimal trajectories. These are uniquely defined using ranges of the parameters and consist of subsets of trajec tories with three switch times (for the problem when the final orientation of the robot is not specified) or four switch times (when a full final configuration is specified). We conclude with a description of the use of the method for trajectory planning for one of our robots and discuss some comparisons of sample time-optimal paths with minimum length paths.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3