Soft modularized robotic arm for safe human–robot interaction based on visual and proprioceptive feedback

Author:

Ku Subyeong1ORCID,Song Byung-Hyun2ORCID,Park Taejun2ORCID,Lee Younghoon3,Park Yong-Lae2ORCID

Affiliation:

1. Korea Automotive Technology Institute, Siheung, South Korea

2. Department of Mechanical Engineering, The Institute of Advanced Machines and Design (IAMD), The Institute of Engineering Research, Seoul National University, Seoul, South Korea

3. Department of Mechanical Engineering, Gachon University, Seongnam, South Korea

Abstract

This study proposes a modularized soft robotic arm with integrated sensing of human touches for physical human–robot interactions. The proposed robotic arm is constructed by connecting multiple soft manipulator modules, each of which consists of three bellow-type soft actuators, pneumatic valves, and an on-board sensing and control circuit. By employing stereolithography three-dimensional (3D) printing technique, the bellow actuator is capable of incorporating embedded organogel channels in the thin wall of its body that are used for detecting human touches. The organogel thus serves as a soft interface for recognizing the intentions of the human operators, enabling the robot to interact with them while generating desired motions of the manipulator. In addition to the touch sensors, each manipulator module has compact, soft string sensors for detecting the displacements of the bellow actuators. When combined with an inertial measurement unit (IMU), the manipulator module has a capability of estimating its own pose or orientation internally. We also propose a localization method that allows us to estimate the location of the manipulator module and to acquire the 3D information of the target point in an uncontrolled environment. The proposed method uses only a single depth camera combined with a deep learning model and is thus much simpler than those of conventional motion capture systems that usually require multiple cameras in a controlled environment. Using the feedback information from the internal sensors and camera, we implemented closed-loop control algorithms to carry out tasks of reaching and grasping objects. The manipulator module shows structural robustness and the performance reliability over 5,000 cycles of repeated actuation. It shows a steady-state error and a standard deviation of 0.8 mm and 0.3 mm, respectively, using the proposed localization method and the string sensor data. We demonstrate an application example of human–robot interaction that uses human touches as triggers to pick up and manipulate target objects. The proposed soft robotic arm can be easily installed in a variety of human workspaces, since it has the ability to interact safely with humans, eliminating the need for strict control of the environments for visual perception. We believe that the proposed system has the potential to integrate soft robots into our daily lives.

Funder

SNU-Hojeon Garment Smart Factory Research Center

National Research Foundation of Korea

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3