Robotic assistance in the coordination of patient care

Author:

Gombolay Matthew1,Yang Xi Jessie1,Hayes Bradley1,Seo Nicole1,Liu Zixi1,Wadhwania Samir1,Yu Tania1,Shah Neel2,Golen Toni2,Shah Julie1

Affiliation:

1. Massachusetts Institute of Technology, Cambridge, MA, USA

2. Beth Israel Deaconess Medical Center, Boston, MA, USA

Abstract

We conducted a study to investigate trust in and dependence upon robotic decision support among nurses and doctors on a labor and delivery floor. There is evidence that suggestions provided by embodied agents engender inappropriate degrees of trust and reliance among humans. This concern represents a critical barrier that must be addressed before fielding intelligent hospital service robots that take initiative to coordinate patient care. We conducted our experiment with nurses and physicians, and evaluated the subjects’ levels of trust in and dependence upon high- and low-quality recommendations issued by robotic versus computer-based decision support. The decision support, generated through action-driven learning from expert demonstration, produced high-quality recommendations that were accepted by nurses and physicians at a compliance rate of 90%. Rates of Type I and Type II errors were comparable between robotic and computer-based decision support. Furthermore, embodiment appeared to benefit performance, as indicated by a higher degree of appropriate dependence after the quality of recommendations changed over the course of the experiment. These results support the notion that a robotic assistant may be able to safely and effectively assist with patient care. Finally, we conducted a pilot demonstration in which a robot-assisted resource nurses on a labor and delivery floor at a tertiary care center.

Funder

CRICO Harvard Risk Management Foundation

National Science Foundation

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3