Exactly sparse delayed state filter on Lie groups for long-term pose graph SLAM

Author:

Lenac Kruno1,Ćesić Josip1,Marković Ivan1,Petrović Ivan1

Affiliation:

1. University of Zagreb Faculty of Electrical Engineering and Computing, Croatia

Abstract

In this paper we propose a simultaneous localization and mapping (SLAM) back-end solution called the exactly sparse delayed state filter on Lie groups (LG-ESDSF). We derive LG-ESDSF and demonstrate that it retains all the good characteristics of the classic Euclidean ESDSF, the main advantage being the exact sparsity of the information matrix. The key advantage of LG-ESDSF in comparison with the classic ESDSF lies in the ability to respect the state space geometry by negotiating uncertainties and employing filtering equations directly on Lie groups. We also exploit the special structure of the information matrix in order to allow long-term operation while the robot is moving repeatedly through the same environment. To prove the effectiveness of the proposed SLAM solution, we conducted extensive experiments on two different publicly available datasets, namely the KITTI and EuRoC datasets, using two front-ends: one based on the stereo camera and the other on the 3D LIDAR. We compare LG-ESDSF with the general graph optimization framework ([Formula: see text]) when coupled with the same front-ends. Similarly to [Formula: see text] the proposed LG-ESDSF is front-end agnostic and the comparison demonstrates that our solution can match the accuracy of [Formula: see text], while maintaining faster computation times. Furthermore, the proposed back-end coupled with the stereo camera front-end forms a complete visual SLAM solution dubbed LG-SLAM. Finally, we evaluated LG-SLAM using the online KITTI protocol and at the time of writing it achieved the second best result among the stereo odometry solutions and the best result among the tested SLAM algorithms.

Funder

Ministry of Science and Education of the Republic of Croatia

Unity through Knowledge Fund

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3