Learning spatial relationships between objects

Author:

Rosman Benjamin12,Ramamoorthy Subramanian1

Affiliation:

1. Institute of Perception, Action and Behaviour, School of Informatics, University of Edinburgh, Edinburgh, UK

2. Mobile Intelligent Autonomous Systems (MIAS) Group, Council for Scientific and Industrial Research (CSIR), South Africa

Abstract

Although a manipulator must interact with objects in terms of their full complexity, it is the qualitative structure of the objects in an environment and the relationships between them which define the composition of that environment, and allow for the construction of efficient plans to enable the completion of various elaborate tasks. In this paper we present an algorithm which redescribes a scene in terms of a layered representation, from labeled point clouds of the objects in the scene. The representation includes a qualitative description of the structure of the objects, as well as the symbolic relationships between them. This is achieved by constructing contact point networks of the objects, which are topological representations of how each object is used in that particular scene, and are based on the regions of contact between objects. We demonstrate the performance of the algorithm, by presenting results from the algorithm tested on a database of stereo images. This shows a high percentage of correctly classified relationships, as well as the discovery of interesting topological features. This output provides a layered representation of a scene, giving symbolic meaning to the inter-object relationships useful for subsequent commonsense reasoning and decision making.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3