PAN-SUNET: UTILITY CORRIDOR UNDERSTANDING USING SPATIAL LAYOUT CONSISTENCY

Author:

Jameela M.,Sohn G.

Abstract

Abstract. The article addresses the need for a dependable and efficient computer vision system to examine utility networks with minimal human intervention, given the deteriorating state of these networks. To classify the dense and irregular point clouds obtained from the airborne laser terrain mapping (ALTM) system, which is used for data collection, we suggest a deep learning network named Panoptic-Semantic Utility Network (Pan-SUNet). The proposed network incorporates three networks to achieve voxel-based semantic segmentation and 3D object detection of the point clouds at various resolutions, including object categories in three dimensions, and predicts two-dimensional regional labels to differentiate utility and corridor regions from non-corridor regions. The network also ensures spatial layout consistency in the prediction of the voxel-based 3D network using regional segmentation. By testing the proposed approach on 67 km2 of utility corridor data with an average density of 5 pts/m2, the paper demonstrates the effectiveness of the technique. The proposed network outperforms the state-of-the-art baseline network, achieving an F1 score of 94% for the pylon class, 99% for the ground class, 99% for the vegetation class, and 99% for the powerline class. It also shows high performance for 3D object detection for pylon and span achieving average precision of 99% and 92% respectively.

Publisher

Copernicus GmbH

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review and future directions of techniques for extracting powerlines and pylons from LiDAR point clouds;International Journal of Applied Earth Observation and Geoinformation;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3