Time-optimal Trajectories for an Omni-directional Vehicle

Author:

Balkcom Devin J.1,Kavathekar Paritosh A.1,Mason Matthew T.2

Affiliation:

1. Department of Computer Science Dartmouth College, Hanover, NH 03755,

2. Robotics Institute Carnegie Mellon University Pittsburgh, PA 15213,

Abstract

A common mobile robot design consists of three ‘omniwheels’ arranged at the vertices of an equilateral triangle, with wheel axles aligned with the rays from the center of the triangle to each wheel. Omniwheels, like standard wheels, are driven by the motors in a direction perpendicular to the wheel axle, but unlike standard wheels, can slip in a direction parallel to the axle. Unlike a steered car, a vehicle with this design can move in any direction without needing to rotate first, and can spin as it does so. The shortest paths for this vehicle are straight lines. However, the vehicle can move more quickly in some directions than in others. What are the fastest trajectories? We consider a kinematic model of the vehicle and place independent bounds on the speeds of the wheels, but do not consider dynamics or bound accelerations. We derive the analytical fastest trajectories between configurations. The time-optimal trajectories contain only spins in place, circular arcs, and straight lines parallel to the wheel axles. We classify optimal trajectories by the order and type of the segments; there are four such classes, and there are no more than 18 control switches in any optimal trajectory.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3