An Experimental Study of Nonlinear Stiffness, Hysteresis, and Friction Effects in Robot Joints with Harmonic Drives and Torque Sensors

Author:

Kircanski Nenad M.1,Goldenberg Andrew A.2

Affiliation:

1. Engineering Services Inc. 5 King's College Road Toronto, Ontario, M5S 1A4 Canada

2. Robotics and Automation Laboratory Department of Mechanical Engineering University of Toronto Toronto, Ontario M5S 1A4 Canada

Abstract

Despite widespread industrial applicatzon of harmonic drives, the source of some elastokinetic phenomena and their impact on overall system behavior has not been fully addressed thus far. Some of these phenomena severely influence the behavior of robot arms, both in free and constrained motions, when the end effector is in contact with an environment. The primary goal of this study is to derive an effective, control-oriented model of a harmonic-drive-based robot joint. Systematic observations of an experimental robot with harmonic drives has revealed that the harmonic drive could not entirely transmit the input torque to the output shaft, due to a nonlinear meshing process between the flexible and circular spline teeth. The torque transmitted to the output shaft might saturate at a much lower value than expected (e.g., motor torque multiplied by the gear ratio). This phenomenon may severely influence the system behavior, par ticularly in force/impedance control tasks when full joint-torque capacity and wide bandwidth are needed. To understand the harmonic-drive behavior, as well as to derive a convenient form of its model, we have shown restrained motion experi ments to be much more useful than free-motion experiments. In this article, we also introduce mathematical models and describe experiments related to other physical phenomena, such as nonlinear stiffness, hysteresis, and soft windup. The goal of our modeling strategy was not to develop a precise and possi bly complicated model, but to generate an appropriate model that could be easily used by control engineers to improve joint behavior To visualize the developed model, equivalent mechan ical and electrical schemes of the joint are introduced. Finally, a simple and reliable estimation procedure has been established for obtaining joint parameters, to ascertain the integrity of the proposed model.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3