A Comprehensive Multibody Model of a Collaborative Robot to Support Model-Based Health Management

Author:

Raviola Andrea1ORCID,Guida Roberto1ORCID,Bertolino Antonio Carlo1ORCID,De Martin Andrea1,Mauro Stefano1ORCID,Sorli Massimo1ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Abstract

Digital models of industrial and collaborative manipulators are widely used for several applications, such as power-efficient trajectory definition, human–robot cooperation safety improvement, and prognostics and health management (PHM) algorithm development. Currently, models with simplified joints present in the literature have been used to evaluate robot macroscopic behavior. However, they are not suitable for the in-depth analyses required by those activities, such as PHM, which demand a punctual description of each subcomponent. This paper aims to fill this gap by presenting a high-fidelity multibody model of a UR5 collaborative robot, containing an accurate description of its full dynamics, electric motors, and gearboxes. Harmonic reducers were described through a translational equivalent lumped parameter model, allowing each constitutive element of the reducer to have its decoupled dynamics and mating forces through non-linear penalty contact models. To conclude, both the mathematical model and the real robot on a test rig were tested with a set of different trajectories. The experimental results highlight the ability of the proposed model to accurately replicate joint angular rotation, speed and torques in a wide range of operational scenarios. This research provides the basis for the development of a model-based PHM-oriented framework to carry out detailed and advanced analyses on the effects of manipulator degradations.

Funder

MOST—Sustainable Mobility National Research Center

European Union Next-GenerationEU (PIANO NAZIONALE DI RIPRESA E RESILIENZA

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Symbolic multibody models for digital-twin applications;Multibody System Dynamics;2023-12-18

2. Airspeed Anomaly Detection of UAV Based on Flight Mode Adaptive with Noise Margin;2023 IEEE 16th International Conference on Electronic Measurement & Instruments (ICEMI);2023-08-09

3. Industrial Robots and the Employment Quality of Migrant Workers in the Manufacturing Industry;Sustainability;2023-05-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3