Affiliation:
1. Willow Garage Inc., Menlo Park, CA, USA
Abstract
We design, optimize and demonstrate the behavior of a tendon-driven robotic gripper performing parallel, enveloping and fingertip grasps. The gripper consists of two fingers, each with two links, and is actuated using a single active tendon. During unobstructed closing, the distal links remain parallel, for parallel grasps. If the proximal links are stopped by contact with an object, the distal links start flexing, creating a stable enveloping grasp. We optimize the route of the active flexor tendon and the route and stiffness of a passive extensor tendon in order to achieve this behavior. We show how the resulting gripper can also execute fingertip grasps for picking up small objects off a flat surface, using contact with the surface to its advantage through passive adaptation. Finally, we introduce a method for optimizing the dimensions of the links in order to achieve enveloping grasps of a large range of objects, and apply it to a set of common household objects.
Subject
Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software
Cited by
89 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献