Applications of hybrid reachability analysis to robotic aerial vehicles

Author:

Gillula Jeremy H.1,Hoffmann Gabriel M.2,Haomiao Huang 2,Vitus Michael P.2,Tomlin Claire J.3

Affiliation:

1. Stanford University, Stanford, CA 94305, USA,

2. Stanford University, Stanford, CA 94305, USA

3. UC Berkeley, Berkeley, CA 94720, USA

Abstract

The control of complex non-linear systems can be aided by modeling each system as a collection of simplified hybrid modes, with each mode representing a particular operating regime defined by the system dynamics or by a region of the state space in which the system operates. Guarantees on the safety and performance of such hybrid systems can still be challenging to generate, however. Reachability analysis using a dynamic game formulation with Hamilton—Jacobi methods provides a useful way to generate these types of guarantees, and the technique is flexible enough to analyze a wide variety of systems. This paper presents two applications of reachable sets, both focused on guaranteeing the safety and performance of robotic aerial vehicles. In the first example, reachable sets are used to design and implement a backflip maneuver for a quadrotor helicopter. In the second, reachability analysis is used to design a decentralized collision avoidance algorithm for multiple quadrotors. The theory for both examples is explained, and successful experimental results are presented from flight tests on the STARMAC quadrotor helicopter platform.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3