Control of robotic mobility-on-demand systems: A queueing-theoretical perspective

Author:

Zhang Rick1,Pavone Marco1

Affiliation:

1. Department of Aeronautics and Astronautics, Stanford University, Stanford, CA, USA

Abstract

In this paper we present queueing-theoretical methods for the modeling, analysis, and control of autonomous mobility-on-demand (MOD) systems wherein robotic, self-driving vehicles transport customers within an urban environment and rebalance themselves to ensure acceptable quality of service throughout the network. We first cast an autonomous MOD system within a closed Jackson network model with passenger loss. It is shown that an optimal rebalancing algorithm minimizing the number of (autonomously) rebalancing vehicles while keeping vehicle availabilities balanced throughout the network can be found by solving a linear program. The theoretical insights are used to design a robust, real-time rebalancing algorithm, which is applied to a case study of New York City and implemented on an eight-vehicle mobile robot testbed. The case study of New York shows that the current taxi demand in Manhattan can be met with about 8,000 robotic vehicles (roughly 70% of the size of the current taxi fleet operating in Manhattan). Finally, we extend our queueing-theoretical setup to include congestion effects, and study the impact of autonomously rebalancing vehicles on overall congestion. Using a simple heuristic algorithm, we show that additional congestion due to autonomous rebalancing can be effectively avoided on a road network. Collectively, this paper provides a rigorous approach to the problem of system-wide coordination of autonomously driving vehicles, and provides one of the first characterizations of the sustainability benefits of robotic transportation networks.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3