Randomized path planning on vector fields

Author:

Ko Inyoung1,Kim Beobkyoon1,Park Frank Chongwoo1

Affiliation:

1. Robotics Laboratory, College of Engineering, Seoul National University, Daehak-dong, Gwanak-gu, Seoul, Republic of Korea

Abstract

Given a vector field defined on a robot’s configuration space, in which the vector field represents the system drift, e.g. a wind velocity field, water current flow, or gradient field for some potential function, we present a randomized path planning algorithm for reaching a desired goal configuration. Taking the premise that moving against the vector field requires greater control effort, and that minimizing the control effort is both physically meaningful and desirable, we propose an integral functional for control effort, called the upstream criterion, that measures the extent to which a path goes against the given vector field. The integrand of the upstream criterion is then used to construct a rapidly exploring random tree (RRT) in the configuration space, in a way such that random nodes are generated with an a priori specified bias that favors directions indicated by the vector field. The resulting planning algorithm produces better quality paths while preserving many of the desirable features of RRT-based planning, e.g. the Voronoi bias property, computational efficiency, algorithmic simplicity, and straightforward extension to constrained and nonholonomic problems. Extensive numerical experiments demonstrate the advantages of our algorithm vis-à-vis existing optimality criterion-based planning algorithms.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust Autonomous Mobile Manipulation for Substation Inspection;Journal of Mechanisms and Robotics;2024-06-24

2. Constrained Bimanual Planning with Analytic Inverse Kinematics;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

3. Robot Assistance Primitives with Force-Field Guidance for Shared Task Collaboration;2024

4. Sampling-Based Motion Planning: A Comparative Review;Annual Review of Control, Robotics, and Autonomous Systems;2023-11-21

5. CAT-RRT: Motion Planning that Admits Contact One Link at a Time;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3