Motion Analysis with Experimental Verification of the Hybrid Robot PEOPLER-II for Reversible Switch between Walk and Roll on Demand

Author:

Okada Tokuji1,Botelho Wagner Tanaka2,Shimizu Toshimi2

Affiliation:

1. Information Science and Engineering, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan,

2. Information Science and Engineering, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan

Abstract

We propose a newly renovated mobile robot PEOPLER-II (Perpendicularly Oriented Planetary Legged Robot), and addresses its motion analysis for switching its locomotion from leg-type to wheel-type and vice versa. For the leg-type locomotion, particularly in a transitional state of sitting or standing, we propose a control method based on minimization of the total energy cost using the distribution of the motor power payload in the hip and knee joints, in addition to the method of keeping the same payload factor. Also, we discuss robot configurations for switching between the two locomotion types by considering environmental factors such as walking gaits, ground inclination angle and robot’s traveling direction. Knee joint position of a pivotal foot determines knee ahead and knee behind gaits. In each switch, we check such characteristics as the hip joint rotation direction, robot center trajectory, and necessary total power in a practical point of use. Then we build three beneficial switching cycles aiming for moderate use of a motor, rider’s comfort, and power saving. Finally, we demonstrate the switching by considering the aim and verify that the results of the analysis become useful for enabling switching on demand.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Reference52 articles.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3