Affiliation:
1. Robotics and Multibody Mechanics Research Group (R&MM), Vrije Universiteit Brussel, Belgium
Abstract
Robots often switch from highly dynamic motion to delivering high torques at low speeds. The actuation requirements for these two regimes are very different. As a consequence, the average efficiency of the actuators is typically much lower than the efficiency at the optimal working point. A potential solution is to use multiple motors for a single motor joint. This results in a redundant degree of freedom, which can be exploited to make the system more efficient overall. In this work, we explore the potential of kinematically redundant actuators in dynamic applications. The potential of a kinematically redundant actuator with two motors is evaluated against a single-motor equivalent in terms of operating range, maximum acceleration, and energy consumption. We discuss how the comparison is influenced by the design of the actuator and the way how the power is distributed over the input motors. Our results support the idea that kinematically redundant actuators can resolve the conflicting torque–speed requirements typical of robots.
Funder
H2020 European Research Council
Fonds Wetenschappelijk Onderzoek
Subject
Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献