Model-based online learning and adaptive control for a “human-wearable soft robot” integrated system

Author:

Tang Zhi Qiang1ORCID,Heung Ho Lam1,Tong Kai Yu1,Li Zheng2

Affiliation:

1. Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR

2. Department of Surgery and the Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR

Abstract

Soft robots are considered intrinsically safe with regard to human–robot interaction. This has motivated the development and investigation of soft medical robots, such as soft robotic gloves for stroke rehabilitation. However, the output force of conventional purely soft actuators is usually limited. This restricts their application in stroke rehabilitation, which requires a large force and bidirectional movement. In addition, accurate control of soft actuators is difficult owing to the nonlinearity of purely soft actuators. In this study, a soft robotic glove is designed based on a soft-elastic composite actuator (SECA) that integrates an elastic torque compensating layer to increase the output force as well as achieving bidirectional movement. Such a hybrid design also significantly reduces the degree of nonlinearity compared with a purely soft actuator. A model-based online learning and adaptive control algorithm is proposed for the wearable soft robotic glove, taking its interaction environment into account, namely, the human hand/finger. The designed hybrid controller enables the soft robotic glove to adapt to different hand conditions for reference tracking. Experimental results show that satisfactory tracking performance can be achieved on both healthy subjects and stroke subjects (with the tracking root mean square error (RMSE) < 0.05 rad). Meanwhile, the controller can output an actuator–finger model for each individual subject (with the learning error RMSE < 0.06 rad), which provides information on the condition of the finger and, thus, has further potential clinical application.

Funder

CUHK T Stone Robotics Institute

Knowledge Transfer Project Fund of the Chinese University of Hong Kong

Innovation and Technology Fund of Hong Kong

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3