Grasp analysis tools for synergistic underactuated robotic hands

Author:

Gabiccini Marco123,Farnioli Edoardo13,Bicchi Antonio134

Affiliation:

1. Research Center “E. Piaggio,” Università di Pisa, Italy

2. Department of Civil and Industrial Engineering, Università di Pisa, Italy

3. Department of Advanced Robotics, Istituto Italiano di Tecnologia, Italy

4. Department of Information Engineering, Università di Pisa, Italy

Abstract

Despite being a classical topic in robotics, the research on dexterous robotic hands still stirs a lively research activity. The current interest is especially attracted by underactuated robotic hands where a high number of degrees of freedom (DoFs), and a relatively low number of degrees of actuation co-exist. The correlation between the DoFs obtained through a wise distribution of actuators is aimed at simplifying the control with a minimal loss of dexterity. In this sense, the application of bio-inspired principles is bringing research toward a more conscious design. This work proposes new, general approaches for the analysis of grasps with synergistic underactuated robotic hands. After a review of the quasi-static equations describing the system, where contact preload is also considered, two different approaches to the analysis are presented. The first one is based on a systematic combination of the equations. The independent and the dependent variables are defined, and cause–effect relationships between them are found. In addition, remarkable properties of the grasp, as the subspace of controllable internal force and the grasp compliance, are worked out in symbolic form. Then, some relevant kinds of tasks, such as pure squeeze, spurious squeeze and kinematic grasp displacements, are defined, in terms of nullity or non-nullity of proper variables. The second method of analysis shows how to discover the feasibility of the pre-defined tasks, operating a systematic decomposition of the solution space of the system. As a result, the inputs to be given to the hand, in order to achieve the desired system displacements, are found. The study of the feasible variations is carried out arriving at the discovery of all the combinations of nullity and/or non-nullity variables which are allowed by the equations describing the system. Numerical results are presented both for precision and power grasps, finding forces and displacements that the hand can impose on the object, and showing which properties are preserved after the introduction of a synergistic underactuation mechanism.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Minimum-Lap-Time Planning of Multibody Vehicle Models via the Articulated-Body Algorithm;Designs;2023-05-17

2. Negative Stiffness Analysis and Regulation of In-Hand Manipulation with Underactuated Compliant Hands;2022 International Conference on Robotics and Automation (ICRA);2022-05-23

3. Design Principle of a Dual-Actuated Robotic Hand With Anthropomorphic Self-Adaptive Grasping and Dexterous Manipulation Abilities;IEEE Transactions on Robotics;2022

4. Introduction;Springer Tracts in Advanced Robotics;2022

5. Planning Robotic Manipulation with Tight Environment Constraints;2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2021-09-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3