High speed locomotion for a quadrupedal microrobot

Author:

Baisch Andrew T.1,Ozcan Onur1,Goldberg Benjamin1,Ithier Daniel1,Wood Robert J.1

Affiliation:

1. Harvard University, School of Engineering and Applied Sciences, Cambridge, MA, USA

Abstract

Research over the past several decades has elucidated some of the mechanisms behind high speed, highly efficient, and robust locomotion in insects such as cockroaches. Roboticists have used this information to create biologically inspired machines capable of running, jumping, and climbing robustly over a variety of terrains. To date, little work has been done to develop an at-scale insect-inspired robot capable of similar feats due to challenges in fabrication, actuation, and electronics integration for a centimeter-scale device. This paper addresses these challenges through the design, fabrication, and control of a 1.27 g walking robot, the Harvard Ambulatory MicroRobot (HAMR). The current design is manufactured using a method inspired by pop-up books that enables fast and repeatable assembly of the miniature walking robot. Methods to drive HAMR at low and high speeds are presented, resulting in speeds up to 0.44 m/s (10.1 body lengths per second) and the ability to maneuver and control the robot along desired trajectories.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3