Certified polyhedral decompositions of collision-free configuration space

Author:

Dai Hongkai1ORCID,Amice Alexandre2ORCID,Werner Peter2,Zhang Annan2ORCID,Tedrake Russ12

Affiliation:

1. Toyota Research Institute, Los Altos, CA, USA

2. Massachusetts Institute of Technology (MIT), Cambridge, MA, USA

Abstract

Understanding the geometry of collision-free configuration space (C-free) in the presence of Cartesian-space obstacles is an essential ingredient for collision-free motion planning. While it is possible to check for collisions at a point using standard algorithms, to date no practical method exists for computing C-free regions with rigorous certificates due to the complexity of mapping Cartesian-space obstacles through the kinematics. In this work, we present the first to our knowledge rigorous method for approximately decomposing a rational parametrization of C-free into certified polyhedral regions. Our method, called C-Iris (C-space Iterative Regional Inflation by Semidefinite programming), generates large, convex polytopes in a rational parameterization of the configuration space which are rigorously certified to be collision-free. Such regions have been shown to be useful for both optimization-based and randomized motion planning. Based on convex optimization, our method works in arbitrary dimensions, only makes assumptions about the convexity of the obstacles in the 3D Cartesian space, and is fast enough to scale to realistic problems in manipulation. We demonstrate our algorithm’s ability to fill a non-trivial amount of collision-free C-space in several 2-DOF examples where the C-space can be visualized, as well as the scalability of our algorithm on a 7-DOF KUKA iiwa, a 6-DOF UR3e, and 12-DOF bimanual manipulators. An implementation of our algorithm is open-sourced in Drake . We furthermore provide examples of our algorithm in interactive Python notebooks .

Funder

Office of Naval Research

National Science Foundation

Air Force Research Laboratory

MIT Quest

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Constant-time Motion Planning with Anytime Refinement for Manipulation;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

2. Certifying Bimanual RRT Motion Plans in a Second;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

3. Approximating Robot Configuration Spaces with few Convex Sets using Clique Covers of Visibility Graphs;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

4. Geometry-Aware Safety-Critical Local Reactive Controller for Robot Navigation in Unknown and Cluttered Environments;IEEE Robotics and Automation Letters;2024-04

5. Fast Path Planning Through Large Collections of Safe Boxes;IEEE Transactions on Robotics;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3