Rigid 3D geometry matching for grasping of known objects in cluttered scenes

Author:

Papazov Chavdar1,Haddadin Sami2,Parusel Sven2,Krieger Kai2,Burschka Darius1

Affiliation:

1. Robotics and Embedded Systems, Technische Universität München (TUM), Garching, Germany

2. Institute of Robotics and Mechatronics, German Aerospace Center (DLR), Wessling, Germany

Abstract

In this paper, we present an efficient 3D object recognition and pose estimation approach for grasping procedures in cluttered and occluded environments. In contrast to common appearance-based approaches, we rely solely on 3D geometry information. Our method is based on a robust geometric descriptor, a hashing technique and an efficient, localized RANSAC-like sampling strategy. We assume that each object is represented by a model consisting of a set of points with corresponding surface normals. Our method simultaneously recognizes multiple model instances and estimates their pose in the scene. A variety of tests shows that the proposed method performs well on noisy, cluttered and unsegmented range scans in which only small parts of the objects are visible. The main procedure of the algorithm has a linear time complexity resulting in a high recognition speed which allows a direct integration of the method into a continuous manipulation task. The experimental validation with a seven-degree-of-freedom Cartesian impedance controlled robot shows how the method can be used for grasping objects from a complex random stack. This application demonstrates how the integration of computer vision and soft-robotics leads to a robotic system capable of acting in unstructured and occluded environments.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3