Affiliation:
1. Département de génie mécanique, Université Laval, Canada
Abstract
This paper investigates the design and experimental development of planar programmable inertia generators. An inertia generator is a hand-held haptic device that has a programmable inertia. By moving internal masses in reaction to accelerations induced by the user, the effective inertia of the device is modified in order to render a prescribed inertia. In this paper, a one-degree-of-freedom device with one internal moving mass is first proposed. The corresponding dynamic model is developed and the rendering capabilities of the device are investigated. Then, a controller is designed to produce the appropriate motion of the internal mass in reaction to the acceleration induced by the user. A prototype is presented and experimental results are discussed. A mechanical architecture is then proposed for the design of a planar three-degree-of-freedom inertia generator. The corresponding dynamic model is derived, and it is shown that the generalized inertia matrix of the proposed mechanism is always of full rank. The rendering capabilities of the device are also investigated. Finally, simulation results obtained with the three-degree-of-freedom inertia generator are reported and discussed.
Subject
Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献